Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics

نویسندگان

  • Jaeseon Lee
  • Issam Mudawar
چکیده

This paper is the second of a two-part study concerning two-phase flow and heat transfer characteristics of R134a in a micro-channel heat sink incorporated as an evaporator in a refrigeration cycle. Boiling heat transfer coefficients were measured by controlling heat flux (q00 = 15.9 93.8W/cm) and vapor quality (xe = 0.26 0.87) over a broad range of mass velocity. While prior studies point to either nucleate boiling or annular film evaporation (convective flow boiling) as dominant heat transfer mechanisms in small channels, the present study shows heat transfer is associated with different mechanisms for low, medium and high qualities. Nucleate boiling occurs only at low qualities (xe < 0.05) corresponding to very low heat fluxes, and high fluxes produce medium quality (0.05 < xe < 0.55) or high quality (xe > 0.55) flows dominated by annular film evaporation. Because of the large differences in heat transfer mechanism between the three quality regions, better predictions are possible by dividing the quality range into smaller ranges corresponding to these flow transitions. A new heat transfer coefficient correlation is recommended which shows excellent predictions for both R134a and water. 2004 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 2. Subcooled boiling pressure drop and heat transfer

This second part of a two-part study explores the performance of a new cooling scheme in which the primary working fluid flowing through a micro-channel heat sink is indirectly cooled by a refrigeration cooling system. The objective of this part of study is to explore the pressure drop and heat transfer characteristics of the heat sink. During single-phase cooling, pressure drop decreased with ...

متن کامل

Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I––pressure drop characteristics

Two-phase pressure drop was measured across a micro-channel heat sink that served as an evaporator in a refrigeration cycle. The micro-channels were formed by machining 231lm wide · 713lm deep grooves into the surface of a copper block. Experiments were performed with refrigerant R134a that spanned the following conditions: inlet pressure of Pin = 1.44–6.60bar, mass velocity of G = 127–654kg/m ...

متن کامل

Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results

A new cooling scheme is proposed where the primary working fluid flowing through a micro-channel heat sink is pre-cooled to low temperature using an indirect refrigeration cooling system. Cooling performance was explored using HFE 7100 as working fluid and four different micro-channel sizes. High-speed video imaging was employed to help explain the complex interrelated influences of hydraulic d...

متن کامل

Effect of Using Nano Encapsulated Phase Change Material on Thermal Performance of Micro Heat Sink

The aim of this paper is to enhance thermal performance of a microchannel heat sink by using nanoencapsulated phase change material (NEPCM) slurry as a cooling fluid instead of pure fluid. A threedimensional model of a circular channel using water slurry of NEPCM was developed. The results show a significant reduction in the mean fluid temperature along the channel and heat sink wall temperatu...

متن کامل

Thermal Design Methodology for High-Heat-Flux Single-Phase and Two-Phase Micro-Channel Heat Sinks

This paper explores several issues important to the thermal design of single-phase and two-phase micro-channel heat sinks. The first part of the paper concerns single-phase heat transfer in rectangular micro-channels. Experimental results are compared with predictions based on both numerical as well as fin analysis models. While the best agreement between predictions and experimental results wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005